
Automating the Collection, Display, Summarization
and Podcasting of Academic Research

Tristan Narine and Patrick Hosein
Department of Electrical and Computer Engineering

The University of the West Indies
St. Augustine, Trinidad

tristan.narine@my.uwi.edu, patrick.hosein@uwi.edu

Abstract—The research produced by many universities is typi-
cally not easily accessible by the average citizen (the Ivory Tower
phenomenon). One reason for this is that Faculty members do not
regularly update their research publications on the University’s
web site. Another reason is that, even if the research impacts
the lives of citizens, it may not be in a format that can be easily
understood by the average citizen. Finally, many people these
days prefer a summary of a publication and some may even
prefer just to have an audio podcast. We introduce a platform to
address these issues and provide a proof of concept using data
for a department from a University. The platform performs the
following functions for a given department, (1) It periodically
scrapes publications for each department member using their
Google Scholar page, (2) For each member it provides a list of
their publications ranked by date or citations and does the same
for the entire department, (3) It uses AI tools to provide a sum-
mary of each publication in layman’s terms and (4) It produces an
audio podcast of the latest publications produced by department
members. We are also planning to use a Large Language Model
so that citizens can ask questions about the research produced by
the department. By automating these processes, the system offers
a scalable and low-maintenance solution to increase research
visibility, foster public engagement, and improve accessibility to
cutting-edge academic advancements.

Index Terms—Web Scraping, Google Scholar publications,
Research visibility, AI summarization

I. INTRODUCTION

Academic institutions play a major role in advancing
knowledge and addressing problems and challenges through
research. However, the impact of research is often poorly
communicated [1], both to the public and students who
may consider it a career path. It is up to individual re-
searchers to painstakingly place their research information
on the departmental websites. This typically requires manual
copy and paste from Google Scholar onto the university’s
website. Consequently, such lists quickly become dated and,
because of this, can’t act as useful resources for interested
students, peers, and the public. The importance of this work
lies in its potential to significantly enhance the visibility and
accessibility of academic research.

Google Scholar allows universal access to scientific research
papers on just about anything and just about every researched
publication is uploaded to Google Scholar. Web scraping is
a technique used to gather data from multiple websites and
compile it into a single spreadsheet or database, simplifying
the analysis and visualization of the information [2], [3]. This

study proposes an automated approach for collecting, process-
ing, and displaying departmental research publications from
Google Scholar, addressing the limitations of manual updates.
The solution involves a Python script written to periodically
retrieve and process publication data from Google Scholar
for all department members, enabling a dynamic and timely
display of research done. The system is designed to feature
the most recent and most cited works. Additionally, recent
publications are summarized using AI to produce layman-
friendly explanations. By doing so, this work addresses the
challenge of maintaining up-to-date and accurate records of
researcher publications, ensuring access to those interested in
the latest academic advancements of the department.

This paper presents the design and implementation of
the automated publication display system and discusses the
technical considerations and decisions made along with the
methodology involved. Generally, by automating the gathering
and presentation of publications, the proposed approach offers
a highly scalable and low-maintenance solution for greatly
improving research visibility and access, thereby fostering
public and student interest in research activities.

II. LITERATURE REVIEW

A. Web Scraping of Academic Research

Web scraping is a key method of automatic extraction of
structured and unstructured web data, and thus a key method
of extracting scholarly research from websites like Google
Scholar. The traditional manual methods of data acquisition are
marked by their time-consuming nature, proneness to human
error, as well as general inefficiency, especially with the rising
volume of research output. Automated systems overcome
these constraints by utilizing target-specific tools and methods
adapted to the target website organization. Google Scholar
is a significant database of scholarly material and a highly
prevalent target for web scraping. It has been proven through
studies that automated tools can successfully harvest metadata,
citations, and references to scholarly papers [1], [2], [4].

Custom web scrapers are used to harvest specific data sets
from websites based on customized criteria. Octobot [2] is
a custom web scraper specifically implemented for Google
Scholar data harvesting for Applied Science University. They
emphasized the advantages of custom solutions, such as the
elimination of redundancy and adaptive crawling mechanisms,



to meet specific institutional needs. The use of rating systems
to prioritize accurate and relevant pages further enhanced the
crawler’s effectiveness.

Beautiful Soup is widely recognized for its parsing of
HTML and XML. It is most suitable for static content scrap-
ing, where the layout of the page remains constant inde-
pendent of requests. Web scraping using Beautiful Soup [4]
demonstrated how Beautiful Soup was employed in scraping
academic data, including titles, abstracts, and authors. Key
advantages ar Ease of Use (Simple syntax makes it simple for
new users), Flexible Parsing (Supports tag and attribute-based
data extraction) and Integration (The result can be formatted as
JSON, CSV, or databases for downstream processing). Weak-
nesses of Beautiful Soup include inefficiency when parsing
JavaScript-dense dynamic pages, where additional tools such
as Selenium become necessary [1], [4].

Dynamic content, which is executed with the help of
JavaScript, is problematic for static web scraping software.
Selenium overcomes this by simulating browser interactions
to replicate user actions. Selenium was utilized [5] to scrape
Google Scholar through automating navigation, form submis-
sion, and log-in. However, Selenium has constraints in terms of
operation speed and resource consumption, especially handling
large scraping operations [4], [5].

Application Programming Interfaces (APIs) provide a struc-
tured and efficient way of acquiring data. In contrast to
traditional web scraping, where HTML content interpretation
is required, APIs provide data in structured formats like JSON
or XML, and applications can easily consume them. Research
titled Scraping Google Scholar Data Using Cloud Computing
Techniques illustrated that by integrating API calls into cloud-
based architectures, the retrieval and categorically grouping of
scholastic data in real-time was feasible [3]. However, APIs
restrict the quantity of data [3], follow a subscription-based
model with usage quotas, and are provider-dependent.

B. Web Development Frameworks

Python web frameworks such as Django and Flask are popu-
lar for web development because they are easy to use, scalable,
and efficient. Django is a ”batteries-included” framework,
i.e., it comes with in-built tools for database manipulation,
authentication, and URL routing, making it suitable for large
applications. Large websites such as Instagram, NASA, and
Mozilla utilize Django because of its strong architecture and
scalability [6], [7].

Flask is a lightweight and minimalist framework that
provides developers greater control over libraries and other
components. In contrast to Django, Flask falls outside the
purview of integrated database systems or form validators, thus
providing room for additional customizations. The modular
design and inherent simplicity of Flask make it ideally suited
for use in microservices and small applications [7].

C. Summarization Techniques

Summarization techniques can be summarized as:

1) Extractive Summarization: Chooses prominent sen-
tences from source documents directly based on fre-
quency, position, or BERT embeddings to identify se-
mantic relationships [5], [8].

2) Abstractive Summarization: Produces paraphrased
summaries based on deep linguistic comprehension.
Transformer models such as Pegasus and BART per-
form well in long-text summarization because of their
attention mechanisms [8], [9].

3) Hybrid Approaches: Blend extractive precision and
abstractive fluency. For example, SciBERT with LED-
Large extracts information and produces coherent sum-
maries [9].

4) Transformer Models: Models such as T5 and BERT
improve summarization by contextualizing text via self-
attention. T5’s text-to-text model can generate short,
useful summaries [5], [8].

5) NLP Techniques: Techniques such as NER, TF-IDF,
and LDA aid summarization by identifying prominent
subjects and entities, which complement transformer
models [5], [8].

III. METHOD

This section outlines the methodology used to automate
the collection, processing, and display of publication data
from Google Scholar for a university department website. The
approach involves three primary stages: data collection, data
processing, and data display, each leveraging Python and the
Beautiful Soup library for web scraping.

A. Data Collection

Google Scholar does not provide an official API, however,
there are third-party APIs available online that can be used.
While these APIs (such as SerpAPI, Apify, ScaleSERP, and
others) are superior in terms of speed and functionality,
they are quite costly and rate-limited. The Beautiful Soup
Python library was instead chosen for this project due to its,
customizable data extraction, adaptability to website changes,
and effectiveness in parsing HTML and XML, allowing for
structured extraction of publication data. In the code snippet
below, Beautiful Soup is employed to parse the HTML content
of a conference paper webpage and extract specific details
about the papers listed. By utilizing the find all method, it
identifies rows representing individual papers, and with find, it
extracts information such as the title, authors, publication date,
citation count, and publications from the relevant HTML tags.
This data is then organized and stored in a structured format
for further use.

A class was created in Python to store each attribute unique
to each researcher. Researcher names and unique Google
Scholar IDs are stored and read from a text file (format:
“first and last name, Google Scholar ID”, example: “John
Doe,IJJe535” ), ensuring flexibility and scalability. This allows
the system to be efficiently updated in the event of an addition
or removal of researchers without modifying the script.



Beautiful Soup was used to iterate through each researcher’s
profile, collecting the publication data and saving it in a
structured format for processing later. This project requires
the collection of each researcher’s most recent and most
cited publications. This was accomplished using different links
within the Beautiful Soup script. The data for the most recent
and most cited publications were stored in separate JSON
files. Storing scraped data in a JSON file because it’s simple,
human-readable, lightweight, and portable. JSON’s key-value
structure naturally fits hierarchical scraped data, and it’s widely
supported by programming languages. Figure 1 provides a
flow chart of the scraping process.

Fig. 1. Overview of scraping process

B. Data Processing

Once the publication data was collected, it underwent a
brief cleaning process to ensure uniformity, particularly in
date formats. A number of the publication data gathered
consisted of different formatted dates such as YYYY/MM/DD,
YYYY/MM or just YYYY. To sort these papers in order
of most recent, the date parameter was standardized. Papers
with missing day and month parameters were assumed to
be published on January 1st, and papers with missing day
parameters were assumed to be published on the first of the
month provided. This was solely used to generate a list of the
most recent publications from the department.

The list of most recent publications across the department
was generated by initializing an empty list for storing unique
papers and a function to track processed titles, ensuring
no duplicates. The function iterates through a collection of
researchers and their papers, adding papers with unique titles
to the list. The papers are then filtered and sorted in descending
order of their publication date. Finally, the most recent papers
are extracted and stored separately onto another JSON file.
This approach ensures the collection of only the latest, unique
publications in an organized manner.

For each recent publication, the title and description were
merged into a single input, which was then processed using a
transformer-based summarization pipeline. The summarization

pipeline was initialized using the Hugging Face Transformers
library with the “facebook/bart-large-cnn” model. This pre-
trained model generated concise summaries of input text by
extracting key information, subsequently integrated into the
original dataset, ensuring the information remained easily
accessible. Additionally, the recent publications served as the
foundation for creating a conversational-style podcast using
NotebookLM, an AI-powered tool designed to summarize
and discuss content, transforming the information into an
engaging audio format. This approach makes complex aca-
demic research more accessible and understandable, not only
for researchers but also for laypeople and other non-experts,
fostering broader engagement and knowledge sharing.

C. Email Notification System

The email notification system was developed to boost user
interaction and provide timely alerts on scholarly publica-
tions. The feature permitted users to subscribe to particular
researchers or to notifications on the discovery of new research
papers in the database. Subscribers were notified via email
upon the discovery of a new publication, thus alerting them
to the current advancement in academia. The email alert
system was built with the smtplib library implemented in
Python. A function was called whenever a new paper was
found to alert all the users who were subscribed. The Simple
Mail Transfer Protocol was implemented while sending the
message through a Gmail account created specifically for this
function. The system managed subscriptions by allowing users
to select researchers that they wished to follow or subscribe
to generic new publication announcements. The subscriptions
were stored in a JSON file database, linking users to researcher
IDs. At scheduled intervals, the system scraped publication
details, and on noticing a new publication by a subscribed
researcher, the system would send an automated message.

D. Data Display

Several frameworks were considered for the application of
this project including Django and Flask. Flask was chosen as it
is a lightweight, minimalistic framework that offers flexibility
without the overhead of Django’s built-in features. Flask’s
modularity and support for asynchronous handling make it
a strong choice for simple, high-concurrency applications,
while Django suits larger projects requiring a full-featured,
structured framework. A flask-based web application was set
up to serve as the display platform for the publication data.
The collected data, saved in JSON format is read periodically
by the Flask application and dynamically loaded onto the
department’s website. Key elements of the display include:

1) Home page: Displays the predefined list of all re-
searchers in the department.

2) Individual researcher pages: Showcases the most recent
and most cited publications from each researcher.

3) Most recent publications page: Showcases the most
recent publications from the department.

4) AI summary page: Showcases the generated AI sum-
mary for the most recent publications.



The project was deployed on the server located at
http://dece.ai.tt. Deployment involved securely
transferring project files to the server using an SSH key.
The Flask application was then configured to run on the
server, enabling online accessibility for testing and further
development. The deployment utilized NGINX as a reverse
proxy and Gunicorn as the WSGI HTTP server to ensure
efficient handling of web traffic and application requests,
providing a robust and scalable setup for the web application.
Additionally, the Python script responsible for collecting and
processing the data is scheduled to run every two days via a
cron job, ensuring the dataset remains consistently up to date.

E. System Overview

This system automates the collection, processing, and pre-
sentation of academic research data in a continuous cycle:

1) Data Collection: Google Scholar pages are scraped to
gather raw publication data.

2) Error Handling: Missing or incomplete data is vali-
dated and corrected (Date elements, citation counts, etc).

3) Data Storage: Processed data is saved into two JSON
files for researchers and departments (sorted by dates or
citations).

4) Publication Filtering: Most recent publications from
the department are identified.

5) AI Summaries and Podcasts: Abstracts and titles are
summarized using AI, and podcasts are generated for
alternative access.

6) Web Rendering: Flask dynamically renders data, sum-
maries, and audio on a web application.

7) 48-Hour Cycle: The system refreshes every 48 hours to
ensure updated content.

8) Email Notifications: The system sends subscribed used
timely notifications depending on subscribed criteria.

This efficient pipeline delivers accurate, up-to-date research
data with minimal manual intervention.

IV. RESULTS

A. Data Collection Accuracy

The system accurately scrapes publication data from Google
Scholar using Beautiful Soup. The script retrieved publication
data for each researcher listed in the department’s text file,
including titles, authors, publication dates, citation counts,
abstracts, and publications. The accuracy of the collected data
was validated by comparing a sample of scraped entries with
the original Google Scholar profiles. Across 11 researchers,
the average data extraction accuracy was 100% and required
approximately 90 seconds, demonstrating the efficiency of the
approach despite the absence of third-party APIs. A sample of
the top 5 papers for a sample researcher from Google Scholar
is shown in Figure 2 and the corresponding scraped data as
displayed on the platform is provided in Figure 3.

B. Summarization and AI Integration

Using the Hugging Face facebook/bart-large-cnn model,
abstracts and titles of the most recent publications were

Fig. 2. Example of Most Recent papers for Researcher from Google Scholar

Fig. 3. Recent papers from Researcher as displayed on the Platform

summarized into concise descriptions. The performance of
the transformer-based model in abstract summarization was
measured with the assistance of cosine similarity and ROUGE
scores. The average cosine similarity score of 0.659 was
achieved, which shows a moderate to high semantic similarity
between the true abstracts and the generated summaries. This
specific measure is crucial to determine the retention of the
overall meaning and major concepts of the abstracts in the
generated summaries.

The ROUGE scores (Table I), which are a lexical overlap
measure, also reflect the summarization performance of the
model. ROUGE-1 (unigram) had a precision of 0.996, recall of
0.408, and F-measure of 0.578. ROUGE-2 (bigram) achieved



a precision of 0.962, recall of 0.391, and F-measure of 0.555,
while ROUGE-L (longest common subsequence) achieved a
precision of 0.991, recall of 0.406, and F-measure of 0.575.
The high precision values across all ROUGE metrics indicate
that the summaries were able to maintain significant terms and
phrases of the original abstracts. The moderate recall scores,
however, indicate that the summaries are concise, and may
omit less critical information.

TABLE I
EVALUATION METRICS FOR ABSTRACT SUMMARIZATION

Metric Precision Recall F-Measure
ROUGE-1 (Unigrams) 0.996 0.408 0.578
ROUGE-2 (Bigrams) 0.962 0.391 0.555
ROUGE-L (LCS) 0.991 0.406 0.575
Cosine Similarity 0.659 (Average)

C. Web Application

The Flask-based web application displayed publication data
dynamically on the department’s website. Key features in-
cluded: A homepage listing all researchers. Individual pages
displaying the most recent and most cited publications, most
recent publications page and AI summary integration for ease
of understanding.

Fig. 4. Sample AI Summaries of Publications

D. Email Notification System

The email notification system was successfully integrated
and tested within the research update cycle. Users are able to
subscribe to multiple researchers, and notifications are sent
automatically upon the detection of new publications. The
automated nature of the system reduced the need for manual
intervention, ensuring efficient update dissemination.

V. DISCUSSION

The automatic system for gathering, summarizing, and pre-
senting academic research has shown its potential in enhancing

research visibility and accessibility. Through the combination
of web scraping, AI-powered summarization, and a dynamic
web interface, the system provides a viable solution to the
problem of keeping publication records up to date. Although
the system has produced encouraging results, some limitations
and areas of improvement need to be recognized. A significant
drawback of web scraping is that it relies on the web page
structure of Google Scholar. Any change in the composition
of Google Scholar or prohibition of automatic access would
adversely affect the system’s effectiveness in obtaining publi-
cation data. Future versions of the system can overcome this
vulnerability through the implementation of adaptive scrap-
ing methods or by employing alternative data procurement
approaches, such as the potential integration of third-party
APIs where applicable. The summarization task, dominated
by transformer-based models, has been successful in summa-
rizing research abstracts into more readable summaries. The
evaluation metrics show that although the precision of the
summaries is high, the recall is moderate, which means that
some secondary information may be omitted. Although this
is consistent with the objective of brevity, improvements are
possible to achieve a more desirable trade-off between brevity
and completeness. Fine-tuning the summarization model or
using a hybrid approach that combines both extractive and
abstractive techniques can additionally enhance the coherence
of the generated summaries. The web application, developed
utilizing the Flask framework, offers a user-friendly and acces-
sible environment for individuals to investigate research pub-
lications. Its inherently dynamic characteristics guarantee that
the information presented is consistently up-to-date, thereby
alleviating the administrative workload associated with man-
ual updates. Furthermore, supplementary features, including
enhanced search functionalities, interactive data visualizations,
and mechanisms for user feedback, have the potential to signif-
icantly enhance user engagement and overall functionality. The
incorporation of email alerts significantly enhanced research
visibility by the immediate communication of updates to the
respective users. This feature obviated the need for manual
checks to access new research, thereby facilitating interaction
and usability within the system. Not only does automation of
this process improve efficiency, it also encourages the creation
of an active academic community, as pertinent research can be
disseminated to the respective audience in real time.

A. Limitations

To address the system’s limitations, improving robustness
through automated error-handling and real-time monitoring
of scraping logic is essential. Enhancing the summarization
pipeline via model fine-tuning or reinforcement learning would
provide improved precision-recall tradeoff, producing more
precise summaries. The system can further be made to analyze
citation networks, collaboration graphs, and research impact,
and provide actionable insights for institutional decision-
making. Adding interactive elements like advanced search ca-
pabilities, user feedback forms, and data visualizations would
enhance user engagement and functionality as a whole.



B. Broader Implications

This system provides a scalable method for automating
academic data gathering and presentation that can be used
across different departments of any university. With inclusion
of functions such as AI-created summaries and dynamic web
interfaces, it is possible for it to be used as an integrated tool
for monitoring and displaying research output irrespective of
the field. For STEM departments, it can monitor high-impact
publications and work together. Humanities and social science
departments can utilize this system to open themselves up
more and encourage engagement from broader audiences. This
flexibility makes the system’s usability across a wide range
of academic disciplines, fostering departmental and university
accessibility, collaboration, and visibility.

C. Future Work: Automated Query System

An AI-based query system can help users navigate sub-
jects and get brief summaries of related studies, tailored to
their academic level. Transformer-based models are effective
at summarizing scientific articles [10], and AI-based tools
can optimize literature reviews by finding and combining
pertinent studies [11]. Generative AI is also promising for
improving research retrieval systems, although issues such as
hallucinations need to be overcome [12]. Both the public
and the university would find such a feature helpful. Students
and individual researchers would be able to view summaries
that are appropriate for their level of experience, which would
improve learning and engagement with academic material.
Universities can use it to facilitate research work by helping
staff and students to scan relevant literature quickly. Future
work could integrate real-time search, fine-tune AI models
for personalized academic summarization, and optimize search
algorithms, making literature reviews more accessible.

Fig. 5. Example of Research Query using OpenAI’s ChatGPT

VI. CONCLUSION

This paper outlines a robust methodology for automating the
collection, summarization, and display of academic research
data, addressing challenges associated with manual updates
and limited accessibility. By integrating web scraping, AI
summarization, and a Flask-based web application, the sys-
tem successfully enhances research visibility and accessibility
while reducing administrative effort. Despite limitations such
as reliance on web scraping and moderate summarization
recall, the system demonstrates its potential to transform how
academic institutions manage and disseminate research out-
puts. Future improvements, including the integration of APIs,
enhanced error-handling, and model fine-tuning, will further
improve the system’s accuracy and scalability, ensuring its
adaptability to evolving technological and institutional needs.

REFERENCES

[1] D. PRATIBA, A. M.S., A. DUA, G. K. SHANBHAG, N. BHANDARI,
and U. SINGH, “Web scraping and data acquisition using google
scholar,” in 2018 3rd International Conference on Computational Sys-
tems and Information Technology for Sustainable Solutions (CSITSS),
pp. 277–281, 2018.

[2] M. A. Aljemazi and M. A. Khder, “Octobot - web scarping towards
retrieving google scholar data,” in 2022 ASU International Conference
in Emerging Technologies for Sustainability and Intelligent Systems
(ICETSIS), pp. 477–482, 2022.

[3] N. A. Sultan and D. B. Abdullah, “Scraping google scholar data using
cloud computing techniques,” in 2022 8th International Conference
on Contemporary Information Technology and Mathematics (ICCITM),
pp. 14–19, 2022.

[4] S. Pant, E. N. Yadav, Milan, M. Sharma, Y. Bedi, and A. Raturi, “Web
scraping using beautiful soup,” in 2024 International Conference on
Knowledge Engineering and Communication Systems (ICKECS), vol. 1,
pp. 1–6, 2024.

[5] I. Naing, N. Funabiki, K. H. Wai, and S. Thandar Aung, “A design
of automatic reference paper collection system using selenium and bert
model,” in 2023 IEEE 12th Global Conference on Consumer Electronics
(GCCE), pp. 267–268, 2023.

[6] M. Sharma, M. S. Khan, and J. Singh, “Python & django the fastest
growing web development technology,” in 2024 IEEE 1st Karachi
Section Humanitarian Technology Conference (KHI-HTC), pp. 1–9,
2024.

[7] P. Thakur and P. Jadon, “Django: Developing web using python,” in 2023
3rd International Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), pp. 303–306, 2023.

[8] N. Radha, R. Swathika, K. R. Uthayan, and M. K. B, “Ai-driven
summarization of academic literature using transformer model,” in
2024 Second International Conference on Inventive Computing and
Informatics (ICICI), pp. 359–364, 2024.

[9] Z. Dar, M. Raheel, U. Bokhari, A. Jamil, E. M. Alazzawi, and A. A.
Hameed, “Advanced generative ai methods for academic text summa-
rization,” in 2024 IEEE 3rd International Conference on Computing and
Machine Intelligence (ICMI), pp. 1–7, 2024.

[10] R. Haruna, A. Obiniyi, M. Abdulkarim, and A. Afolorunsho, “Automatic
summarization of scientific documents using transformer architectures:
A review,” in 2022 5th Information Technology for Education and
Development (ITED), pp. 1–6, 2022.

[11] P. Castillo-Segura, C. Alario-Hoyos, C. D. Kloos, and
C. Fernández Panadero, “Leveraging the potential of generative
ai to accelerate systematic literature reviews: An example in the area of
educational technology,” in 2023 World Engineering Education Forum
- Global Engineering Deans Council (WEEF-GEDC), pp. 1–8, 2023.

[12] M. Saied, N. Mokhtar, A. Badr, M. Adel, P. Boles, and G. Khoriba,
“Ai in literature reviews: a survey of current and emerging methods,”
in 2024 International Mobile, Intelligent, and Ubiquitous Computing
Conference (MIUCC), pp. 61–65, 2024.


